Exercise 28

Use a linear approximation (or differentials) to estimate the given number.

$$
\cos 29^{\circ}
$$

Solution

Compute the derivative of $y=\cos x$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(\cos x) \\
& =-\sin x
\end{aligned}
$$

Consequently, the differential of $y=\cos x$ is

$$
d y=-\sin x d x
$$

In order to estimate $\cos 29^{\circ}=\cos 29 \pi / 180$, set $x=\pi / 6 \approx 0.52$ and $d x=(\pi / 6)-(29 \pi / 180) \approx 0.017$.

$$
d y=\left(-\sin \frac{\pi}{6}\right)\left(\frac{\pi}{6}-\frac{29 \pi}{180}\right)=-\frac{\pi}{360} \approx-0.00872665
$$

Note that $d y$ here is the vertical distance from the function's actual value at $x=\pi / 6$ to the linear approximation's value at $x=29 \pi / 180$.

$$
\cos 29^{\circ} \approx \cos \frac{\pi}{6}+\frac{\pi}{360}=\frac{180 \sqrt{3}+\pi}{360} \approx 0.874752
$$

